Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: PA1123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Fischer, R. X., Le Lirzin, A., Kassner, D. & Rüdinger, B. (1991). Z. Kristallogr. 3, 75.
- Mercier, N. & Leblanc, M. (1993a). Eur. J. Solid State Inorg. Chem. 30, 195-205.
- Mercier, N. & Leblanc, M. (1993b). Eur. J. Solid State Inorg. Chem. 30, 217–225.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1998a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1994). C50, 1864-1865

A New Rare Earth Fluorocarbonate, Na₂Eu(CO₃)F₃

NICOLAS MERCIER AND MARC LEBLANC

Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans CEDEX, France

(Received 13 April 1994; accepted 24 June 1994)

Abstract

The structure of sodium europium fluorocarbonate, $Na_2Eu(CO_3)F_3$, obtained by hydrothermal growth, has been determined by single-crystal X-ray diffraction. The orthorhombic structure comprises EuO_3F_6 polyhedra linked by triangular faces and edges. Infinite EuO_2F_3 sheets in the *ab* plane are connected by the carbonate groups and Na atoms.

Comment

At high temperature (T = 1000 K), the study of the Na₂CO₃-LnF₃ system by hydrothermal growth leads only to Na₃Ln₂(CO₃)₄F phases (Ln = La, Pr) (Mercier & Leblanc, 1993). At lower temperature, a new structure type, Na₂Eu(CO₃)F₃, is found. In the title compound, the cations adopt classical coordination numbers. Atoms Na1 and Na2 occupy the centres of NaO₄F₂ and NaO₂F₄ polyhedra, respectively. Each Eu atom is surrounded by three O atoms and six F atoms which form a tricapped

triangular prism. It must be noted that the valence-bond analysis, as proposed by Brown (1982), is satisfied for all atoms. The EuO₃F₆ polyhedra are connected through the triangular faces formed by the F atoms and form infinite chains along *a*. These chains are linked together by $O \cdots O$ edges in order to build infinite EuF_{6/2}O_{2/2}O sheets in the *ab* plane (Fig. 1). These sheets are shifted one from another along **c** and linked by Na atoms. One O atom of a carbonate group bonds solely to Na atoms. Only Na2 atoms are shown in Fig. 1, at the centre of pseudo-hexagonal cavities.

Fig. 1. Part of the structure of $Na_2Eu(CO_3)F_3$ showing a layer of EuO_3F_6 polyhedra in the *ab* plane.

Experimental

A mixture of Na₂CO₃ and EuF₃ in a 3/1 ratio under hydrothermal conditions (T = 650 K, P = 130 MPa) for 48 h leads to a new phase, Na₂Eu(CO₃)F₃. A parallelepipedic crystal was chosen for X-ray analysis by optical examination and its quality was tested with Laue photography.

Crystal data

Na₂Eu(CO₃)F₃ Mo $K\alpha$ radiation $M_r = 314.94$ $\lambda = 0.71073 \text{ Å}$ Orthorhombic Cell parameters from 38 Pbca reflections a = 6.596 (4) Å $\theta = 15.20 - 15.75^{\circ}$ b = 10.774 (4) Å $\mu = 12.713 \text{ mm}^{-1}$ c = 14.090 (10) ÅT = 293 (2) K $V = 1001.3 (10) \text{ Å}^3$ Block Z = 8 $0.2 \times 0.15 \times 0.15$ mm $D_x = 4.178 \text{ Mg m}^{-3}$ Colourless

Data collection

Stoe Siemens AED fourcircle diffractometer $\omega/2\theta$ scans 1666 observed reflections $[I > 3\sigma(I)]$ $R_{int} = 0.028$

Acta Crystallographica Section C ISSN 0108-2701 ©1994

N. MERCIER AND M. LEBLANC

Absorption correction:	$\theta_{\rm max} = 35.03^{\circ}$
Gaussian integration	$h = 0 \rightarrow 10$
$T_{\min} = 0.173, T_{\max} =$	$k = 0 \rightarrow 17$
0.276	$l = 0 \rightarrow 22$
5195 measured reflections	3 standard reflections
2158 independent reflections	frequency: 60 min
•	

Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0177$ wR(F²) = 0.0451 S = 1.2441666 reflections 92 parameters $w = 1/[\sigma^2(F_o^2) + (0.0179P)^2$ + 3.1730*P*] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.023$ $\Delta \rho_{\rm max}$ = 1.179 e Å⁻³ $\Delta \rho_{\rm min} = -1.197 \ {\rm e} \ {\rm \AA}^{-3}$

requency: 60 min intensity variation: 4.7% Extinction correction: SHELXL93 (Sheldrick, 1994) Extinction coefficient: 0.0083(2)Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	х	у	Ζ	U_{eq}
Eu	-0.00608(2)	0.183349 (12)	0.014476 (9)	0.00726 (5)
Nal	0.2439 (2)	0.27913 (13)	0.25571 (10)	0.0169 (2)
Na2	-0.0541 (3)	0.00972 (14)	0.39257 (11)	0.0190 (3)
С	0.0008 (4)	0.5157 (3)	0.3229 (2)	0.0104 (4)
OX1	0.0059 (4)	0.4363 (2)	0.2575 (2)	0.0152 (4)
OX2	0.4449 (4)	0.1291 (2)	0.3127 (2)	0.0187 (5)
OX3	-0.0693(4)	0.4864 (2)	0.4076 (2)	0.0115 (4)
F1	0.3011 (3)	0.2184 (2)	0.10300 (14)	0.0129 (3)
F2	0.2904 (3)	0.3381 (2)	0.41870 (14)	0.0141 (4)
F3	0.1491 (3)	0.1236 (2)	0.48054 (15)	0.0136 (3)

Table 2. Selected geometric parameters (Å, °)

2.339 (2)	Na1—F2	2.403 (3)
2.341 (2)	Na1—OX1 ^v	2.426 (3)
2.365 (2)	Na1—OX2 ⁱ	2.726 (3)
2.367 (2)	Na2—F3	2.200(3)
2.387 (2)	Na2—OX1 ^{iv}	2.280 (3)
	2.339 (2) 2.341 (2) 2.365 (2) 2.367 (2) 2.387 (2)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Eu—OX3 ⁱⁱⁱ	2.405 (2)	Na2—F3 ^{vi}	2.377 (3)
Eu-Fl	2.409 (2)	Na2F1 ⁱ	2.443 (3)
Eu—OX3 ^{iv}	2.440 (2)	Na2—OX3 ^{vii}	2.506 (3)
Eu—OX2 ⁱ	2.525 (3)	Na2-F2 ^{viii}	2.565 (3)
Na1—OX2	2.239 (3)	C1—OX1	1.258 (3)
Na1—F1	2.281 (3)	$C1 - OX2^{ix}$	1.281 (4)
Nal—OX1	2.309 (3)	C1—OX3	1.318 (4)
$OX1$ — $C1$ — $OX2^{ix}$	124.0 (3)	OX2 ^{ix} —C1—OX3	115.3 (3)
OX1-C1-OX3	120.6 (3)		

Symmetry codes: (i) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (iii) $x, \frac{1}{2} - y, z - \frac{1}{2};$ (iv) $-x, y - \frac{1}{2}, \frac{1}{2} - z;$ (v) $\frac{1}{2} + x, y, \frac{1}{2} - z;$ (vi) -x, -y, 1 - z; $(vii) - \frac{1}{2} - x, y - \frac{1}{2}, z; (viii) \frac{1}{2} - x, y - \frac{1}{2}, z; (ix) \frac{1}{2} - x, \frac{1}{2} + y, z.$

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990), option PATT. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: STRUPLO90 (Fischer, Le Lirzin, Kassner & Rüdinger, 1991).

The authors thank Dr R. Retoux, Université du Maine, for his help in X-ray data collection.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: PA1124). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, I. D. (1982). The Bond Valence Method, Vol. 2, edited by O'Keeffe & Navrotsky. New York: Academic Press.

- Fischer, R. X., Le Lirzin, A., Kassner, D. & Rüdinger, B. (1991). Z. Kristallogr. 3, 75.
- Mercier, N. & Leblanc, M. (1993). Eur. J. Solid State Inorg. Chem. 30, 609-617.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.